
Shell Scripting Toolkit 2.7
© 2004-2010 by Bill Stewart (bstewart@iname.com)

In the past, I frequented the microsoft.public.win2000.cmdprompt.admin and alt.msdos.batch.nt
newsgroups, and I noticed several common questions related to command-line scripting. In response to some
of these questions and answers, and also to meet some of my own shell scripting needs, I have written a
small set of tools to assist the shell script author.

All of these programs are copyrighted freeware. Except for one, they are all Win32 console (text-based)
programs that run from a command prompt window.

Program Page Description
CCase 4 Reads each line of standard input, converts it to upper- or lowercase, and

writes it to standard output.
ColorX 4 Echoes the current screen colors to standard output or sets the colors for

the next text to be written to standard output.
DateX 5 Echoes to standard output the current date, a specified date, or an offset

from the current or specified date in a variety of formats.
DriveX 7 Returns the drive type for a specified drive as an exit code, or lists drives of

a specified type to standard output.
EchoX 8 Echoes text to standard output in a selectable color. Also supports several

escape sequences, a format width, and alignment.
FInfo 9 Echoes selectable information about one or more files on standard output,

including last modification date/time, filename or path (or both), and file size.
IfX 10 Case-insensitive string or numeric comparison of two arguments. (Not

needed on the Windows NT platform.)
LineX 10 Counts the number of lines in standard input, print a specific line, or a

specified number of lines from the beginning or end of standard input.
S2V 11 A real-mode MS-DOS executable that reads the first line of standard input

and stores it in an environment variable. (DOS and Win9x/Me only; not
functional, and not needed, on Windows NT).

ShellEsc 12 For each line of standard input, inserts a shell escape character (^) before
each reserved shell character, and writes the line to standard output.

SleepX 12 Pauses a script for a specified delay period.
Str 13 Counts characters in a string, echoes a string in upper or lowercase, and

searches for one string in another.
Tee 13 Writes each line from standard input to a specified file and to standard

output simultaneously.
TempName 14 Generates a temporary unique file or directory name.

In the remainder of this documentation, the Windows 9x/Me (Windows 95, Windows 98, Windows 98 SE, and
Windows Millennium edition) platform will be referred to as Win9x and the Windows NT platform (e.g.
Windows NT/2000/XP/2003/Vista/2008/etc.) will be referred to as WinNT. In each case, I’m assuming you’re
using the default command shell (Command.com on Win9x, Cmd.exe on WinNT).

I’m also assuming that you are familiar with Windows NT shell scripting. For an excellent overview, see Tim
Hill’s book Windows NT Shell Scripting (April 1998, ISBN 1578700477). Even though the book is almost nine
years old as of this writing, it is still an excellent overview of the Cmd.exe command shell on the Windows NT
platform, although it has not been updated with the new capabilities added to Cmd.exe in Windows 2000 and
later.

For some examples of what you can do with these utilities, see Sample Applications on page 15.

1

License Statement
These programs may be used and/or redistributed freely, provided you do the following:

• Give the author due credit.
• Let the author know how you’re using the software.
• Do not modify the executables in any way.

These programs are distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgments
The Win32 programs in this package were developed with Free Pascal (http://www.freepascal.org/), and
this documentation was written using OpenOffice.org (http://www.openoffice.org/). The author would like to
gratefully acknowledge the authors of these outstanding free tools.

General Notes
Capturing Standard Output in an Environment Variable

Most of these programs rely on standard input and output, which is a simple and standard way for text-
based programs to interact with one another. Of particular use is to read a line from standard input and
store it in an environment variable.

On the Win9x platform, you can use the helper program S2V (see page 11). It reads a line (up to 255
characters) of standard input and stores it in an environment variable.

On the WinNT platform, you can accomplish this by using the Cmd.exe For /f command. The general
format of the command in a script is as follows:

for /f "delims=" %%v in ('command') do set ENVVAR=%%v
Note how the delims flag does not specify any delimiters; this causes the For command to read each line
of the standard output of command into an environment variable without parsing it into tokens. Of course,
you can also specify delimiters and tokens if you desire to parse the output differently. Enter the command
For /? at a Cmd.exe prompt for more information.

Displaying Help for Commands
For all of the programs except EchoX, you may specify /? as the first command line argument on the
command line and the program will display a short synopsis of its use. The help information will also
appear if a program requires arguments but none are supplied.

Command-Line Arguments and Quoting
For each program except S2V, if a command-line argument contains spaces or tabs, enclose it in single
or double quote marks. This indicates to the program’s command-line parser that you are giving it a single
argument. Since the quote marks simply delimit the beginning and end of the argument, they are not
included in the argument itself. For example:

echox "Hello, world"

Hello, world is the contents of the argument; since it includes a space character, the quote marks tell the
program that the space is part of the argument. The quotes are not themselves part of the argument; they
simply tell the command-line parser where the argument starts and ends. You may use either single (') or
double quote (") marks. If an argument needs to contain either type of quote mark, you must quote using
the other; for example: 'This string contains "double" quotes' or "This string contains 'single' quotes".

2

Many command-line arguments consist of switches (e.g. -a, -b, -c, etc.) that modify the program’s
behavior. These may appear in any order on the command line. Some switches themselves require
arguments, and the same case as above applies: If an argument to a switch contains spaces or tabs,
enclose it in quotes.

After the program processes all of the command-line switches, the rest of the command line arguments (if
any) are processed separately. If a program needs non-switch command-line arguments, they must
appear after all switches on the command line. Non-switch arguments also need quotes if they contain
spaces or tabs.

Reserved Shell Characters on Windows NT
Cmd.exe, has a set of seven special characters that have special meaning to the shell. These are:

() < > ^ & |

To use any of these characters literally in a shell command, you must use the escape character (^) before
any of these characters (including the escape character itself). In some cases, it is useful to echo or parse
the output of a command without worrying whether it contains any of the reserved characters. The
ShellEsc utility (see page 12) is provided to work around this problem; it will perform the necessary
“escaping” for the shell.

Console Applications on Win9x
Win32 console (text-based) programs are poorly behaved on Win9x because they are handled by a
separate program called Conagent.exe. Many of the console APIs are buggy or implemented
incompletely. In many cases, using the Win32 console functions to write colored text to standard output on
Win9x does not function properly (particularly on the last line of the console window). Since the Win9x
platform is obsolete and no longer being updated, Microsoft will not be fixing these bugs.

Exit Codes and the If Command
You must exercise care when checking the exit code of a program using If Errorlevel. In general, it is
important to check exit codes in descending order, because “If Errorlevel n” really means “If Errorlevel
>= n”. This means that If Errorlevel 0 is always true.

To check for a specific exit code, you can use the following “double-if” construct:

if errorlevel n if not errorlevel n+1 ...

For example, to check if the exit code is exactly zero:

if errorlevel 0 if not errorlevel 1 ...

You can avoid this in Cmd.exe scripting by using “If Errorlevel EQU n”, as the EQU operator performs an
exact comparison. (You can also use the %ERRORLEVEL% variable.)

3

CCase
Description

Reads each line of standard input, converts it to upper or lowercase, and writes it to standard output.

Usage
ccase [-u | -l]

Arguments
-u Converts to uppercase (default).
-l Converts to lowercase.

Examples
1. Echo a string in uppercase:

echo Hello, world | ccase

2. Uppercase an environment variable, Cmd.exe:

for /f "delims=" %%v in ('echo %VAR% ^| ccase') do set VAR=%%v

Note the use of the escape character (^) in the command string.

3. Uppercase an environment variable, Win9x:

echo %VAR% | ccase | s2v VAR

ColorX
Description

Writes the current screen colors to standard output, sets the color for text subsequently written to
standard output, or lists a table of colors. Setting colors does not work on Win9x due to console API
issues.

Usage
colorx [-c color | [-f fg] [-b bg]]
colorx -l

Arguments
color

Hexadecimal value (two hex digits) specifying both the foreground and background colors (01 through
FE). The first hex digit is the background color, and the second hex digit is the foreground color.

fg Hex value (single hex digit) specifying a foreground color (0 through F).
bg Same as above, but specify a background color.
-l Lists all colors in a table (see below).

If you attempt to specify colors such that the foreground and background colors match, ColorX will ignore
the request and return an exit code of 1.

4

Color Table
If you specify -l, ColorX will display a color table with color values in hexadecimal:

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F
80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF
F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

Note that each row represents a background color, and each column represents a foreground color. The
first digit in each number is the background color, and the second digit is the foreground color.

Examples
1. Set the screen colors to white on blue:

colorx -c 1F

2. Sets the background color to red:

colorx -b 4

3. Cmd.exe script sample: Store the current colors, output a Dir command in bright white on cyan, and
restore the colors again:

for /f %%a in ('colorx') do set COLOR=%%a
colorx -c 3F
dir /w
colorx -c %COLOR%

DateX
Description

Echoes to standard output the current date, a specified date, or an offset from the current or specified
date in a variety of formats.

Usage
datex [-d date] [-f format] [-i num] [-o offset] [-t]

Arguments
date

Specifies a particular date/time. Specify year/month/day order. If you include the time, place it after the
date in hours:minutes:seconds order (minutes and seconds are optional).

format
Specifies the date output format (see table below).

5

num
Specifies an integer representing a date (inverse of -t).

offset
Specifies a number-of-days difference. Can be a negative number.

-t Outputs the date as an integer.

Without arguments, DateX outputs the current date and time in the following format: yyyy/mm/dd hh:nn:ss.
You can control the formatting with -f (see table below).

Date Formats
Date format specifiers are listed in the below table. They are similar to the options Windows provides in
the Control Panel for controlling date and time formats.

Date Formatting Characters
y Year (two digits) d Day of month
yy Year (two digits) dd Day of month (leading zero)
yyyy Year (four digits) ddd Day of week (abbreviation)
m Month dddd Day of week (full)
mm Month (leading zero)
mmm Month (abbreviation) ddddd ShortDateFormat: mm/dd/yy
mmmm Month (full) dddddd LongDateFormat: mmmm d, yyyy

Time Formatting Characters
h Hour a/p 12-hour clock with a or p
hh Hour (leading zero) am/pm 12-hour clock with am or pm
n Minute
nn Minute (leading zero) t ShortTimeFormat: hh:nn
s Second tt LongTimeFormat: hn:nn:ss
ss Second (leading zero)

Combination Formats
c ShortDateFormat + " " + ShortTimeFormat

If you need spaces within a date format, enclose the entire format in quotes.

Examples
1. Output the current date similar to Cmd.exe’s Date /t command:

datex -f "ddd mm/dd/yyyy"

2. Output yesterday’s date:

datex -o -1

3. Output the current date and time as an integer:

datex -t

This is useful for comparing the date and time from a file (see FInfo on page 9) with the current date
and time.

6

4. Display the date and time for a specified integer:

datex -i 2162688

The output of this command is:

1980/01/01 00:00:00

DriveX
Description

Returns the drive type for a specified drive as an exit code, or lists drive(s) of a specified type to standard
output. It can list the current set of drives and types.

Usage
drivex [-d drive] [-l type] [-v]

Arguments
drive

Return an exit code representing the type of the specified drive (see the list of types below). The drive
letter may be specified with or without the colon (:). Specify 0 (zero) to indicate the current drive. An
invalid drive designation will return an exit code of 1.

type
Drives of the specified type will be listed to standard output. Drive types are 2 through 6, as follows:

2 Removable
3 Fixed
4 Remove (network)
5 CD-ROM
6 RAM disk

-v List available drives and types in a table format.

Examples
1. List fixed drives to standard output:

drivex -l 3

Sample output:

C
D
E

2. Return drive type of current drive as an exit code. Sample code:

drivex -d 0
if errorlevel 3 if not errorlevel 4 goto :HD

In this example, the script will branch to the :HD label if the exit code is exactly 3 (fixed drive). See
Exit Codes and the If Command on page 3 for a description of this “double-if” construction.

7

3. List drives on the machine:

drivex -v

Sample output:

Drive Type Description

A: 2 Removable
C: 3 Fixed
D: 5 CD-ROM
E: 4 Remote (network)
R: 6 RAM disk

EchoX
Description

Echoes text to standard output in a selectable color. Also supports several escape sequences, a format
width, and alignment. Writing colored text to standard output is very problematic on Win9x due to console
API issues; in particular, writing a colored string on the last line of the console window will not reset the
previous colors properly.

Usage
echox [-c color | [-f fg] [-b bg]] [-n] [-w width [-r | -e]] message
echox -l

Arguments
color

Hexadecimal value (two hex digits) specifying both the foreground and background colors (01 through
FE). The first hex digit is the background color, and the second hex digit is the foreground color.

fg Hex value (single hex digit) specifying a foreground color (0 through F).
bg Same as above, but specify a background color.
-n Do not skip to the next line (no carriage return/line feed).
width

The text should be formatted to exactly width characters. If the text is longer than the specified width,
it is truncated; if it is shorter, then it is padded with spaces on the right (left-justified), unless you
specify -r or -e.

-r Right-justify the message with respect to width.
-e Centers the message with respect to width.
message

Specifies the text to write to standard output. Enclose it in quotes if it contains spaces or tabs.
-l Lists all colors in a table (See Color Table on page 5).

If you attempt to specify colors such that the foreground and background colors match, EchoX will ignore
the request and return an exit code of 1.

The string of text can contain the following “escape” sequences:

~n Carriage return/line feed (move to next line)
~r Carriage return (move cursor to beginning of current line)
~t Tab character

If a ~ character is followed by any of n, r, or t, it will be interpreted as an escape sequence per the above
table. You can bypass this interpretation by using ~~. Also, these escape sequences are ignored if you
specify a format width (-w).

8

Examples
1. Display the string Hello, world in white on red:

echox -c 4F "Hello, world"

2. Display a centered message in bright cyan (assuming the console window has 80 columns):

echox -f B -w 80 -e "Centered Message"

3. Use the Cmd.exe For command to count to 100% on a single line, and display a message when
finished:

for /l %%i in (1,1,100) do echox -n "%%i%% complete~r"
echox "Done "

In this example, the Cmd.exe For command will count from 1 to 100, and EchoX will print the iterator
variable followed by a carriage return. After the iterations are complete, EchoX prints Done followed by
spaces to overwrite the previous text.

FInfo
Description

Echoes selectable information about one or more files on standard output, including last modification
date/time, filename or path (or both), and file size.

Usage
finfo [-d format] [-f | -p | -n] [-t] [-z [-s]] filename [...]

Arguments
format

FInfo should output the last modification date/time in the specified format. (See Date Formats on
page 6 for a list of formats.) Use quotes if the format contains spaces.

-f Output full pathnames.
-p Output paths (subdirectory names) only.
-n Output filenames only.
-t Output last modification date/time as an integer.
-z Output file size(s) (up to 2GB per file).
-s Include thousands separators in the size(s).
filename

One or more files. You may use wildcards and repeat as many filenames on the command line as
needed. Remember to use quotes if any filenames contain spaces.

If you specify more than one item to report on, the output will appear in the following order:

Formatted date/time, integer date/time, file size, filename or pathname

Each item will be separated by a single space.

Examples
1. Output the filename and size for all *.exe files in the current directory:

finfo -n -z -s *.exe

2. Output the full pathname for the file readme.txt:

finfo -f readme.txt

9

IfX
Description

Performs a case-insensitive comparison of two strings or a numeric comparison of two integers, and
returns an exit code. This program is only useful on the Win9x platform.

Usage
ifx arg1 arg2

Arguments
arg1 and arg2 are the two arguments to compare. They can be either integers or strings. If both
arguments are composed of all numeric digits, then IfX performs a numeric comparison; otherwise, it
performs a case-insensitive string comparison. If you are comparing strings that contain spaces or tabs,
enclose both arguments in quotes.

Exit Codes
0 The two arguments are equal.
1 Argument 1 is less than argument 2.
2 Argument 1 is greater than argument 2.

Examples
1. Compare two strings:

ifx "hello, world" "Hello, World"

This command will return an exit code of 0 because IfX is not case-sensitive. Note that IfX is not
needed in WinNT, because Cmd.exe’s If /i command supports case-insensitive comparisons:

if /i "hello, world"=="Hello, World" ...

2. Compare two numbers:

ifx 1023 2047
if errorlevel 2 goto :GTR
if errorlevel 1 goto :LSS
echo The two numbers are equal
...

Note that the If Errorlevel tests are performed in descending order (see Exit Codes and the If
Command on page 3 for a discussion of why this is important).

LineX
Description

Counts the number of lines in standard input, print a specific line, or a specified number of lines from the
beginning or end of standard input.

Usage
linex -c | -n | -l n [-e n] | -h n | -t n | -r

Arguments
-c Outputs the number of lines in standard input.
-n Outputs the contents of standard input with line numbers.
-l Outputs line n from standard input.
-e Also outputs the next n lines.
-h (Head) Outputs the first n lines from standard input.

10

-t (Tail) Outputs the last n lines from standard input.
-r Outputs in reverse order. Can only be used alone or with -n.

Examples
1. Count the number of files in the current directory:

dir /a-d /b | linex -c

2. Capture the output of a single ping:

ping -n 1 192.168.0.1 | linex -l 7

The Windows Ping program adds superfluous carriage returns to its output. LineX sees these extra
carriage returns as separate lines, so as a result it sees the output of the ping as being on line 7. To
see the actual output of the ping command as seen by LineX:

ping -n 1 192.168.0.1 | linex -l

3. Output the names of the three most recently modified in the current directory:

dir /b /o-d | linex -h 3

You could also use:

dir /b /o-d | linex -l 1 -e 2

This command outputs line one (-l 1) and also the next two lines (-e 2).

Notes
LineX reads all of standard input into memory, so it might perform slowly on inputs that exceed the
computer’s memory.

S2V
Description

A real-mode MS-DOS executable that reads the first line of standard input and stores it in an environment
variable. Only for Win9x; does not work (and is not needed) on WinNT.

Usage
s2v varname

Arguments
varname specifies the name of the environment variable.

Examples
1. Store the name of the newest *.exe file in the current directory in the variable NE:

dir /a-d /b /o-d *.exe | s2v NE

2. Store the last modification date/time of the file ccase.exe in the variable DT:

finfo -t ccase.exe | s2v DT

11

ShellEsc
Description

For each line of standard input, inserts a shell escape character (^) before each reserved shell character,
and writes the line to standard output. This is useful when you are capturing standard input and want to be
able to use it without worrying about special shell characters. The reserved shell characters are:

() < > ^ & |

Note that ShellEsc is not useful on Win9x since Command.com only has three reserved characters (<, >,
and |), and the only way to “escape” them is by quoting the entire string.

Usage
shellesc

Examples
1. Escapes the output of the Dir command, and writes it to an output file:

dir | shellesc > out

If you then open the output file in a text editor, you’ll notice that each of the reserved shell characters
is prefixed by the escape character (^).

2. Cmd.exe: Script sample to produce a time-stamped ping:

for /f "delims=" %%d in ('datex') do set STAMP=%%d
for /f "delims=" %%p in ('ping -n 1 192.168.200.200 ^| linex -l 7 ^|

shellesc') do set OUT=%%p
echo %STAMP% %OUT%

Note that we need to escape the pipe symbols (|) in the command.

SleepX
Description

Pauses a script for specified delay period.

Usage
sleepx [-k] [-m] [-p prompt] delay

Arguments
-k Abort the delay and return a non-zero exit code if a key was pressed.
-m The delay is specified in millseconds, rather than seconds.
prompt

Displays the specified prompt. Use quotes if it contains spaces or tabs.

Examples
1. Pause a script for 5 seconds:

sleepx 5

2. Pause a script for 30 seconds, with a prompt:

sleepx -p "Please wait for 30 seconds..." 30

12

3. Script sample that pauses for 10 seconds, and allows a keystroke to interrupt the pause:

sleepx -p "Wait for 10 seconds, or press a key..." -k 10
if errorlevel 1 goto :KEYPRESSED

Str
Description

Counts characters in a string, echoes a string in upper or lowercase, and searches for one string in
another.

Usage
str [-c | -l | -u] string
str [-i] -p string1 string2

Arguments
-c Echoes the number of characters in string.
-l Echoes string in lowercase.
-u Echoes string in uppercase.
-p Echoes the starting position of string2 in string1. If string2 is not found in string1, return -1.
-i Perform a case-insensitive comparison (-i must appear before -p on the command line).

Remember to enclose the string in quotes if it contains spaces.

Examples
1. Cmd.exe: Check %1 for wildcard characters (* or ?):

for /f %%p in ('str -p %1 *') do set POS=%%p
if %POS% GEQ 0 echo %1 contains the * character
for /f %%p in ('str -p %1 ?') do set POS=%%p
if %POS% GEQ 0 echo %1 contains the ? character

2. Cmd.exe: Check if %1 is at least eight characters:

for /f %%l in ('str -c %1') do set LEN=%%l
if %LEN% GEQ 8 (echo %1 is at least 8 characters) else (echo %1 too short)

Tee
Description

Writes each line from standard input to a specified file and to standard output simultaneously. Useful when
you want to write information to standard output and to a file at the same time.

Usage
tee [-a] filename

Arguments
-a Append to the file if it exists (don’t overwrite it).

Examples
1. Display a directory on the screen and to the file list.txt:

dir | tee list.txt

If the file list.txt already exists, Tee will overwrite it unless you specify -a.

13

2. Echo an error message on the screen and to a log file simultaneously:

echo Error! | tee -a errors.log

In this case, the string Error! will appear on standard output, and it will also be appended to the file
errors.log.

Notes
If Tee can’t open the specified file, it will output a message to standard error:

Error number opening filename

The number will correspond to the Win32 error code; to see the textual representation of the error
message in Windows 2000 or later, use the command Net Helpmsg number. Tee’s exit code will match
the error number.

In case of an error, Tee will still write standard input to standard output, and it will write the error message
to standard error after it is finished.

TempName
Description

Generates a unique temporary file name.

Usage
tempname [-p path] [-e ext]

Arguments
path

The path for the temporary file name. Enclose it in quotes if it contains spaces. If you don’t specify a
path, TempName will use the directory specified by the TEMP environment variable.

ext
The extension for the file. .TMP is the default extension. To omit an extension, specify a blank string
after the -e option (e.g., -e "").

Examples
1. Cmd.exe: Create a temporary filename in the TEMP directory, and put it in the TEMPNAME variable.

for /f "delims=" %%t in ('tempname') do set TEMPNAME=%%t

2. Win9x: Create a temporary filename in the TEMP directory and put it in the TN variable:

tempname | s2v TN

Notes
TempName generates a pseudo-random hex number for a filename and verifies that the file doesn’t exist
before writing it to standard output.

14

Sample Applications
Except where otherwise noted, all of these examples are for Cmd.exe. Also, the line numbers in the script
samples are for reference only; they are not a part of the actual scripts. Note that these scripts are merely
short examples; there may be faster and/or more efficient ways to do the same things.

1. List files in the current directory modified in the last 24 hours.

You can combine the DateX and FInfo utilities. Here is a sample Cmd.exe script:

1. @echo off
2. setlocal enableextensions
3. for /f %%d in ('datex -t -o -1') do set DT=%%d
4. for /f "tokens=1,2*" %%e in ('finfo -t -n *') do call :SHOW %%e "%%f"
5. endlocal & goto :EOF
6.
7. :SHOW
8. setlocal
9. set FN=%2
10. for /f "delims=" %%f in ('echo %FN% ^| shellesc') do SET FN=%%f
11. set FN=%FN:"=%
12. if %1 GEQ %DT% echo %FN%
13. endlocal & goto :EOF

On line 3, we capture yesterday’s date as a number (-t -o -1) to the variable DT. In line 4, we call the
SHOW subroutine with the file’s time (first token, %%e) and the filename (remaining tokens, %%f) as
parameters. Note that we quote the filename in case it contains spaces.

Inside the SHOW subroutine on line 9, we store the second parameter (%2) into the FN variable. on line
10, we filter the variable through ShellEsc in case a filename contains any of the reserved shell
characters; then we remove the quotes from the filename on line 11. On line 12, we compare the file’s
time (%1) with the DT variable we created in line 3. If it’s greater or equal, then echo the filename (line
12).

2. Retrieve a file’s size into an environment variable.

Cmd.exe in Windows 2000 and later has this capability via the For command:

for %%v in (filename) do set VARNAME=%~zv

Cmd.exe in Windows NT 4.0 doesn’t have the ~z modifier, so we can use FInfo instead:

for /f %%s in ('finfo -z finfo.exe') do set SIZE=%%s

On Win9x, we can use FInfo and S2V:

finfo -z finfo.exe | s2v SIZE

3. Find a file on all local hard drives.

We’ll use DriveX to obtain a list of local hard drives, and use the Dir command to redirect a list of files
from all hard drives to a temporary file. Then, we can parse the temporary file and use FInfo to output the
date/time/size and full pathname of each file. Here’s the script:

1. @echo off
2. if {%1}=={} goto :HELP
3. if {%1}=={/?} goto :HELP
4. goto :START
5.

15

6. :HELP
7. echo Usage: %~n0 filename
8. echo.
9. echo Searches for the specified file(s) on all fixed drives.
10. goto :EOF
11.
12. :START
13. setlocal enableextensions
14. set FN=%1
15. set FN=%FN:"=%
16. for /f "delims=" %%t in ('tempname') do set TF=%%t
17. set FS=0
18. for /f %%d in ('drivex -l 3') do dir /b /s "%%d:\%FN%" >> "%TF%" 2> NUL
19. for /f "delims=" %%f in ('type "%TF%"') do call :SHOW "%%f"
20. for /f %%c in ('linex -c ^< "%TF%"') do echox "~n%%c file(s) found"
21. echo %FS% byte(s)
22. if exist "%TF%" del "%TF%"
23. endlocal & goto :EOF
24.
25. :SHOW
26. setlocal
27. set FN=%1
28. for /f "delims=" %%f in ('echo %FN% ^| shellesc') do set FN=%%f
29. set FN=%FN:"=%
30. for /f "tokens=1,2,3*" %%a in ('finfo -d "yy/mm/dd hh:nn" -f -z "%FN%"')

do (
31. echox -n "%%a %%b " & echox -n -w 12 -r %%c & echox " %%d"
32. set SIZE=%%c
33.)
34. endlocal & set /a FS+=%SIZE% & goto :EOF

In this script, we require a single command-line parameter: A filename pattern to search for. Lines 2 and 3
use curly braces to avoid quote problems; if we don’t enter a parameter, or if the first parameter is /?, then
display help information. Otherwise, branch to the START subroutine.

In the START subroutine, we store the command-line parameter (%1) into the FN variable. We also use
TempName to generate a temporary filename and put it in the TF variable. On line 17, we initialize the FS
variable (file sizes) to 0.

On line 18, we use the For command to to parse each line of the DriveX output, and we use the iterator
variable (%%d) to specify the drive letter to use for the Dir command. We redirect the output to the
temporary file. The end of the command line (2> NUL) tells the shell to redirect standard error output to
the null device (don’t show it); this is in case the Dir command reports any errors to standard error (e.g.
“File Not Found”).

On line 19, we parse each line of the temporary file, and pass each line as a parameter to the SHOW
subroutine.

Inside the SHOW subroutine, we store the first parameter (%1) in the FN variable (line 27). Then we pass
the variable’s contents through ShellEsc in order to escape any reserved shell characters that the
filename might contain. Then we strip off the quotes (line 29).

On line 30, we parse the output of the FInfo command (note that it’s too long to fit in this document’s
margins, but it should all be on one line). Remember that each line of the temporary file we created on line
18 contains a single filename, which might contain spaces, so we quote the filename when using FInfo.
On line 31, we use EchoX twice with the -n argument to keep the outputs on the same line. The first
EchoX command prints the date and time; the second EchoX command prints the file’s size (right-justified
with a maximum width of 12), and the last EchoX command prints the file’s name. We then store the file’s
size in the SIZE variable (line 32).

16

Line 34 takes advantage of the fact that the shell expands environment variables on the line before
executing the commands, so it increments the FS variable we created on line 17 with the size of the file
we just displayed before exiting the subroutine.

After finishing the SHOW subroutine, the script returns to line 20, where we count the lines in the
temporary file and use EchoX to display the count (we use ~n to separate the last found file from the count
with a new line). Line 21 displays the cumulative sizes of the files, and line 22 deletes the temporary file.

This script is provided in the distribution as WhereIs.cmd.

4. Compare the last modification date of two files.

Here is a sample Cmd.exe script:

1. @echo off
2. setlocal enableextensions
3. set F1=TEE.EXE
4. set F2=CCASE.EXE
5. for /f %%a in ('finfo -t %F1%') do set F1M=%%a
6. for /f %%a in ('finfo -t %F2%') do set F2M=%%a
7. if %F1M% EQU %F2M% (
8. echo Date/time stamps for %F1% and %F2% match
9.) else (
10. if %F1M% LSS %F2M% (
11. echo %F1% is older than %F2%
12.) else (
13. echo %F1% is newer than %F2%
14.)
15.)
16. endlocal

Below is a sample script that duplicates the above functionality on Win9x:

1. @echo off
2. set F1=TEE.EXE
3. set F2=CCASE.EXE
4. finfo -t %F1% | s2v F1M
5. finfo -t %F2% | s2v F2M
6. ifx %F1M% %F2M%
7. if errorlevel 2 goto :GTR
8. if errorlevel 1 goto :LSS
9. echo Date/time stamps for %F1% and %F2% match
10. goto :END
11. :LSS
12. echo %F1% is older than %F2%
13. goto :END
14. :GTR
15. echo %F1% is newer than %F2%
16. :END
17. set F1=
18. set F2=
19. set F1M=
20. set F2M=

This script uses IfX on line 6 to compare the files’ times because Command.com’s If command does not
provide a way to perform a numeric comparison.

17

